
MeshFeat: Multi-Resolution Features
for Neural Fields on Meshes

Mihir Mahajan⋆1 , Florian Hofherr⋆1,2 , and Daniel Cremers1,2

1 Technical University of Munich
2 Munich Center for Machine Learning

Abstract. Parametric feature grid encodings have gained significant at-
tention as an encoding approach for neural fields since they allow for
much smaller MLPs, which significantly decreases the inference time of
the models. In this work, we propose MeshFeat, a parametric feature en-
coding tailored to meshes, for which we adapt the idea of multi-resolution
feature grids from Euclidean space. We start from the structure provided
by the given vertex topology and use a mesh simplification algorithm to
construct a multi-resolution feature representation directly on the mesh.
The approach allows the usage of small MLPs for neural fields on meshes,
and we show a significant speed-up compared to previous representations
while maintaining comparable reconstruction quality for texture recon-
struction and BRDF representation. Given its intrinsic coupling to the
vertices, the method is particularly well-suited for representations on
deforming meshes, making it a good fit for object animation.

Keywords: Feature Encodings · Multi-Resolution · Meshes

1 Introduction

Capturing and modeling our 3D world realistically and effectively is becom-
ing increasingly relevant for AR, VR, CGI, simulations, and computer games.
Classical approaches for scene representation often rely on explicit discrete data
structures like voxel grids to store function values like SDF. Alternatively, point
clouds, and meshes are used to store geometry or UV-Maps, and discrete texture
maps to represent appearance. For all these approaches, the memory footprint is
strongly coupled to the resolution, making high-resolution representations often
impractical. Since the breakthrough work by Mildenhall et al. [30], the focus has
shifted towards neural implicit representations, which use Multilayer Perceptrons
(MLP) to represent scenes in a continuous and resolution-free manner.

The key to high-quality reconstructions is to use input encodings to overcome
the spectral bias of neural networks [35] and enable the model to learn high-
frequency details. Models based on frequency encodings like positional encoding
[30, 44] or Fourier features [36, 42] tend to be costly and slow to evaluate since
all the information on the scene is stored in the weights of the MLP. This results
⋆ Equal contribution

https://orcid.org/0009-0005-5109-3774
https://orcid.org/0000-0002-8688-3056
https://orcid.org/0000-0002-3079-7984

2 M. Mahajan et al.

Mesh
simplification

Multi-resolution
features

Texture and BRDF reconstruction

Well-suited for deforming meshes

Fig. 1: We present MeshFeat, a parametric encoding strategy for neural fields on
meshes. We propose a multi-resolution strategy based on mesh simplification to en-
hance the efficiency of the encoding. Our approach allows for much smaller MLPs than
previous frequency-based encodings, resulting in significantly faster inference times.
We evaluate the method for texture reconstruction and BRDF estimation and demon-
strate, that the encoding is well suited to represent signals on deforming meshes.

in a strong coupling of different parts of the scene and necessitates large neural
networks. On the other hand, the use of multi-resolution feature grids [5, 7, 16,
22,25,26,34,40,43] as input encoding has led to a large gain in evaluation speed,
making the models real-time capable. The idea of feature grids is to store local
information about the scene in spatially distributed features and use only a small
MLP to decode this information to the quantity of interest. This decoupling
of spatial information from information decoding, combined with the resulting
possibility of smaller networks, is the reason for the performance gain for those
approaches.

While neural representations have demonstrated impressive performance, nu-
merous 3D computer graphics pipelines continue to utilize meshes as a fundamen-
tal data structure. Meshes remain a preferred choice in many applications due to
the existence of efficient algorithms, intuitive editing capabilities, and convincing
animation possibilities. Consequently, a noteworthy avenue of research explores
the integration of mesh-based representations with neural fields, aiming to cap-
italize on the strengths of both approaches. Texture fields by Oechsle et al . [32]
embed the points on the mesh into the surrounding Euclidean space and lever-
ages neural fields to regress texture values. NeuTex [48] and other methods [2,42]
follow the same idea, but additionally use frequency encodings to capture higher
frequency details and circumvent the spectral bias issue. Unfortunately, these
Euclidean embeddings do not take the mesh geometry into account, and for
points where Euclidean and geodesic distance varies significantly, these methods
can show bleeding artifacts [19]. Intrinsic neural fields by Koestler et al . [19] ad-

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 3

dresses this by transferring the idea of frequency encodings from the Euclidean
space to manifolds by using the eigenfunctions of the Laplace-Beltrami Opera-
tor. This makes the encoding intrinsic to the mesh. While they show promising
results in reconstruction quality, they require heavy preprocessing to calculate
the eigenfunctions. Moreover, they require a large number of eigenfunctions, re-
sulting in a substantial memory footprint of the model. All methods employ
frequency-based encodings and, therefore, suffer from the requirement of large
networks, hindering efficient inference and rendering.

In this work, we propose MeshFeat, a novel parametric multi-resolution fea-
ture encoding for neural fields on meshes, for which we adopt ideas of feature
grids from Euclidean space. We leverage the spatial structure given by the mesh
and employ a mesh simplification algorithm for our multi-resolution strategy.
Similarly to feature grids in Euclidean space, decoupling spatial information
and decoding allows for much smaller MLPs and significantly accelerates the
inference compared to previous methods. A schematic overview of our approach
can be seen in Fig. 1.

We summarize our main contributions as follows:

– We introduce MeshFeat, a parametric feature encoding for neural fields on
meshes which includes an effective multi-resolution strategy based on mesh
simplification.

– We demonstrate that this feature encoding allows for significantly smaller
MLPs compared to previous approaches, leading to a large speed-up in in-
ference time.

– We perform a thorough comparison of our approach to state-of-the-art meth-
ods for the tasks of single-object texture reconstruction and BRDF estima-
tion. Moreover, we demonstrate the native applicability of our approach to
signal representation on deforming meshes.

Please see our project page at https://maharajamihir.github.io/MeshFeat/
for the source code.

2 Related Work

Neural Fields Scene representation based on coordinate-based networks has
been used extensively in recent years. The idea is to use a simple multi-layer
perception (MLP) to map a spatial position to quantities of interest like oc-
cupancy [6, 27, 34], signed distance [11, 33], texture [32], density and color for
volume rendering [30,46,50] and more. In contrast to classical methods for scene
representation purely based on explicit and discrete data structures like voxel
grids, these implicit approaches are not limited by a discrete resolution resulting
in a much more memory-efficient representation. The key to high-fidelity recon-
structions with neural fields is to encode the input to a higher dimensional space
to overcome the low-frequency bias of neural networks [3, 35].

https://maharajamihir.github.io/MeshFeat/

4 M. Mahajan et al.

Input Encodings The different input encoding strategies can be divided into
two categories: frequency-based encodings and parametric approaches. Among
the most popular choices for the first type are positional encodings, which orig-
inate from transformer architectures [44] and have been first introduced in the
seminal NeRF paper [30] for neural fields. The idea is to use a sequence of sine
and cosine functions to encode the input coordinates. Tancik et al . analyze these
positional encodings using neural tangent kernel analysis and generalize the idea
to the Fourier feature encoding [42]. A similar effect is achieved by SIRENs,
which are MLP with periodic activation functions [38]. Hertz et al . complement
this idea with an adaptive frequency masking scheme [13].

In contrast, parametric encodings do not directly apply an encoding function
to the input. Instead, they use the input coordinate as an interpolation point
for learnable features stored in more classical data structures like grids [5, 7, 16,
22,25,26,34,40,43]. To evaluate the model, the grid features are interpolated at
the input coordinate, and the result is used as an input for the MLP. Extending
a single-resolution grid to a multi-resolution approach adds different scales of
locality to the model. This decoupling of local and global information helps to
improve efficiency and convergence properties. As further improvements, the use
of hash grids [31] and octrees [41] have been proposed.

Parametric encodings allow for much smaller MLPs than their frequency-
based counterparts, making evaluating these models significantly faster. Intu-
itively, feature encodings contain the information “What is at this position” and
the MLP decodes this into quantities of interest. In contrast, frequency-based
encodings do not contain learned information, and the MLP needs to store all
the information on the scene in its weights. The smaller computational cost for
parametric encodings comes at the price of a larger memory footprint.

Input Encodings for Neural Fields on Meshes Encoding strategies specifi-
cally for meshes have received much less attention than encodings for neural fields
in the Euclidean space. A common strategy, used e.g . by Texture Fields [32], is
to embed the points on the mesh into the surrounding Euclidean space. This en-
ables the use of established encoding strategies like Fourier features, as done by
Text2Mesh [28] or variants of positional encoding, as done by Hertz et al . [14].

The drawback of this strategy is that the embedding to the surrounding
space makes the encodings extrinsic and the properties of the underlying mani-
fold represented by the mesh are not considered, which can lead to artifacts [19].
Koestler et al . show, that the equivalent to positional encoding in the Euclidean
space are the eigenfunctions of the Laplace-Beltrami Operator on manifolds [19].
Grattarola and Vandergheynst investigate a similar idea [10]. This results in an
intrinsic encoding that respects the properties of the manifold and enables appli-
cations like texture transfer. This approach has been used successfully to model
deformation fields on meshes [23,45] and for scene stylization [15]. While intrinsic
encodings are elegant, in practice, many eigenfunctions have to be stored per ver-
tex, resulting in a large model size. Also, the computation of the eigenfunctions
is costly since the eigenvalues of a large matrix need to be computed.

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 5

All approaches for encodings on meshes discussed so far follow the idea of
frequency encodings and thus require large MLPs for high-quality reconstruction,
resulting in slow evaluation times. In contrast, we present a parametric encoding
on a mesh, enhanced by a multi-resolution strategy. Only very few previous works
consider this form of encoding. Yang et al . [49] train features on a mesh, which
they use as a scaffold for a neural scene representation in 3D. In contrast to our
work, their approach does not contain hierarchical features, and moreover, they
do not consider a signal restricted to the mesh surface. While Kim et al . propose
multi-resolution features, they only consider spherical meshes [18]. In contrast,
we are not restricted to a certain class of meshes.

Multi-Resolution Approaches on Meshes Multi-resolution approaches for
meshes have been used for various tasks. Lee et al . use mesh simplification
based on vertex removal for adaptive re-meshing [20]. Liu et al . investigate mesh
simplification for multi-grid solvers on curved surfaces [24]. Jiang et al . propose
a prismatic shell for meshes that can help to avoid geometric artifacts for mesh
simplification algorithms for extreme vertex reductions at the cost of additional
computational overhead [17]. MeshCNN uses a learned mesh-pooling for a multi-
resolution approach to mesh analysis tasks [12].

3 Method

In this section we present MeshFeat, a parametric encoding strategy for the
parametrization of neural fields directly on meshes. We adapt the idea of multi-
resolution grids for the Euclidean space to meshes to obtain an efficient encod-
ing. Instead of using a regular voxel grid in Euclidean space, we use the mesh
vertices as pre-defined locations to store the feature vectors. We apply a mesh
simplification algorithm to obtain different resolutions of the initial mesh for
our multi-resolution approach. Similar to feature grids in Euclidean space, our
approach allows to use very small MLPs resulting in a fast evaluation time.

3.1 Multi-Resolution Feature Encoding

Mesh Simplification To obtain our multi-resolution feature encoding, we sim-
plify the initial mesh M = (V, F) to multiple resolutions using the quadric error
metric decimation by Garland and Heckbert [8,9]. We denote the sequence of res-
olutions for the mesh simplification by (r(i))i, where r(i) ∈ [0, 1] means, that the
i-th resolution has |V (i)| = r(i)|V | number of vertices. This yields the sequence
of meshes ((V (i), F (i)))i. Moreover, we store the mapping

m(i) : V → V (i) v 7→ m(i)(v) = v(i) (1)

that assigns a vertex v ∈ V in the original mesh to the vertex v(i) ∈ V (i) in
resolution i to which v was collapsed in the decimation algorithm. Note that
in contrast to other simplification-based multi-resolution schemes, we do not
compute a geometric mapping between the resolutions, which reduces the com-
putational overhead. Please see the appendix for further information.

6 M. Mahajan et al.

Original
Resolution

Simplified
Meshes

Barycentric
Interpolation

Fig. 2: Overview of our multi-resolution feature approach on the mesh. To get the
feature encoding ϕ(x) for a point x on the original mesh, we determine the vertices
u, v, w of the respective triangle. Using the mappings m(i), we gather the correspond-
ing features from the different resolutions. By summing them, we obtain the features
ϕu, ϕv, ϕw at the vertices in the original mesh. We receive the final feature encoding
ϕ(x) by barycentric interpolation of the features at the vertices.

Multi-Resolution Strategy For each of the resolutions, we use a learnable
feature matrix Z(i) ∈ R|V (i)|×d, where d ∈ N is the feature dimension. We denote
the feature vector of vertex v(i) ∈ V (i) by Z(i)(v(i)) ∈ Rd.

In contrast to parametric encodings on Euclidean grids, we do not interpo-
late the features for each resolution but rather accumulate the features from all
resolutions on the original resolution and interpolate the results only once. The
reason is that a point on the mesh for a certain resolution does not have a direct
meaning on the meshes of the other resolutions. The Euclidean embedding of
the point, for example, does not even need to be on the other meshes. Therefore,
we use the mappings m(i) to “pull” all features of the coarser resolutions to the
finest resolution (which is where we want to evaluate the function on the mesh).
We obtain the combined feature vector ϕv for a vertex v ∈ V in the original
mesh by summing the feature vectors from all resolutions

ϕv =
∑
i

Z(i)(m(i)(v)). (2)

See Fig. 2 for an overview of our multi-resolution feature pipeline.

Feature Interpolation To obtain the feature vector for an arbitrary point x
on the mesh, we compute the barycentric coordinates p(x) = [λ1, λ2, λ3]

⊤ within
the respective triangle of the original mesh. Let v1, v2, v3 ∈ V be the vertices of
this triangle. Then the encoding ϕ(x) for the point x reads

ϕ(x) =
∑
i

λiϕvi = [ϕv1 , ϕv2 , ϕv3] p(x). (3)

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 7

3.2 Feature Regularization

Depending on the training setup, it can happen that the features for some ver-
tices will never receive a training signal. For example, for training from images
and very fine meshes, some triangles might not be hit during the ray mesh in-
tersection leading to missing supervision for vertices in that region. We use a
regularization of the features based on the mesh Laplacian to avoid the resulting
artifacts. We denote the mesh Laplacian of the mesh in the original resolution
by L ∈ R|V |×|V |. To remove the dependency on the mesh scale and avoid the ne-
cessity to tune the regularization weight to each mesh individually, we normalize
L by its spectral norm, i.e. we consider L̂ = L/∥L∥2. For the regularization, we
accumulate the features for all vertices of the original resolution in the matrix
Φ ∈ R|V |×d and sum the absolute values of the normalized Laplacian applied to
the features, i.e.

Lreg =
∑
i,j

|(L̂Φ)i,j |. (4)

This can be seen as the sum over the 1-norms of the Laplacian applied to the
individual entries of the latent codes. This loss term penalizes large variations of
neighboring feature values since the Laplacian computes the deviation from the
local average. Still, due to the 1-norm, we allow for sparse larger changes. Note
that while we compute the loss term only for the original resolution, the regular-
ization affects all resolutions since we apply the Laplacian to the accumulated
features. In practice, we use the robust Laplacian by Sharp and Crane [37].

3.3 Model Architecture and Training Details

To decode the feature vectors into the final function value, we employ a standard
MLP with ReLU activation functions. For the experiments in this paper, we
use a hidden dimension of 32 with 2 hidden layers. Also, we employ a sigmoid
output-nonlinearity since all of our reconstructed signals are in the range [0, 1].
To prevent overfitting, a weak L2 regularization (with weight 10−5) proved to
be helpful.

We found that a total of 4 resolutions r(i) ∈ {1, 0.1, 0.05, 0.01} for the
mesh simplification achieved optimal results for all experiments. Note, that for
r(1) = 1, the mapping m(1) yields the identity function, i.e. we use the original
mesh as our finest resolution. We initialize the feature matrices using a normal
distribution with σ = 5 · 10−4.

For training, we use a batch size of b = 8000. We train for 1000 epochs for
the texture reconstruction task and for 500 epochs for the BRDF estimation.
We found that different learning rates for the MLP parameters and the features
are crucial. We use lrθ = 2 · 10−4 for the weights of the neural network and
lrZ = 5 · 10−3 for our latent codes. We use a factor λreg = 1.5 · 10−6 to balance
the regularization loss with the data loss.

8 M. Mahajan et al.

4 Experiments

In this section, we present a detailed evaluation of our proposed approach. First,
we evaluate our method for single-object texture reconstruction from multi-view
images. We compare against state-of-the-art methods [19, 32, 48]. Moreover, we
perform an ablation study to evaluate the significance of our modeling choices.
As a second application of our method, we consider the reconstruction of a
parametric BRDF from multi-view images of a single object with calibrated
lighting. We use our approach to estimate the parameters of the well-known
Disney BRDF [4] spatially varying on the mesh. Furthermore, we demonstrate
that our method is well-suited to represent quantities on deforming meshes due
to the tight coupling with the mesh. We refer to the supplementary material for
additional experiments and further training information.

Concurrent Models We compare our encoding strategy to state-of-the-art
work for neural fields on meshes with different encoding strategies. We use Tex-
ture Fields (TF) [32] as a method with an extrinsic encoding strategy. Consistent
with the experiments done by Koestler et al . [19], we augment the method with
random Fourier features (RFF). Moreover, we compare against Intrinsic Neural
Fields (INF) [19], which uses an intrinsic and frequency-based encoding based
on the eigenfunctions of the Laplace-Beltrami operator. Both methods use an
MLP with 6 hidden layers of width 128. To keep the experiments consistent
with previous work [19], we also include a modified version of NeuTex [48] in
our experiments on texture reconstruction, even though the method was orig-
inally designed for geometry estimation along with texture. NeuTex follows a
UV-mapping-based approach and learns separate networks for geometry, UV-
mapping and texture. Following Koestler et al . [19], we allow it to take advan-
tage of the given geometry. We refer the reader to their work for details on
this modification. Finally, as a reference, we include a non-neural baseline, for
which we learn color values directly on the vertices of the original mesh and use
barycentric interpolation to obtain the values on the triangles. Again, we use
our regularization term to account for unsupervised vertices. All methods are
adapted into the same pipeline for a fair comparison.

4.1 Texture Reconstruction from Multi-View Images

We follow the experimental setup of Intrinsic Neural Fields [19], initially pro-
posed by Oechsle et al. [32] and use the same dataset. The input to all methods
is a set of five 512x512 pixel posed images alongside their respective intrinsic and
extrinsic camera matrices. Additionally, the triangle mesh of the object is given.
In the preprocessing stage, we compute the ray-mesh intersection for each pixel
to obtain the corresponding point on the mesh. We use the Euclidean embedding
of this point as input for TF and use barycentric coordinates in the respective
triangle for the other methods. Additionally, for INF, the values of the eigen-
functions of the Laplace-Beltrami operator (LBO) must be computed at the

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 9

Table 1: Texture reconstruction from multi-view images. Our multi-resolution fea-
ture encoding significantly improves inference speed compared to state-of-the-art neu-
ral methods while maintaining similar reconstruction quality. Note that DSSIM and
LPIPS are scaled by 100. The trade-off for the speed-up is a slight increase in the num-
ber of parameters; however, we still have a significantly smaller model compared to
INF, which generally produces the best results. While the non-neural reference base-
line has the fastest evaluation time, it shows significantly decreased reconstruction
quality, particularly for the coarser mesh. For our method, using the regularizer shows
a substential improvement in reconstruction quality. While for coarser meshes like the
cat, we obtain better reconstruction results for an increase in feature dimension (d ↑)
to d = 10, we did observe slight overfitting for finer meshes like the human.

Object Method PSNR ↑ DSSIM ↓ LPIPS ↓ # Params. ↓ Speedup ↑
human
|V | = 129k

NeuTex [48] 27.32 0.549 0.954 793k 1.0x
TF+RFF [32,42] 32.10 0.232 0.423 331k 3 1.96x
INF [19] 32.46 3 0.215 0.390 3 133130k 3.06x 3
Ours (λreg = 0) 31.25 0.323 0.510 604k 13.49x
Ours (d ↑) 32.46 0.203 3 0.410 1058k 12.08x
Ours (d = 4) 32.51 3 0.202 3 0.400 3 604k 3 13.49x 3
Non-neural (ref.) 32.01 0.225 0.432 391k 28.32x

cat
|V | = 33k

NeuTex 31.56 0.338 0.336 793k 1.0x
TF+RFF 34.33 0.162 3 0.247 3 331k 3 1.96x
INF 34.76 3 0.166 3 0.202 3 36430k 3.07x
Ours (λreg = 0) 33.27 0.305 0.453 166k 13.33x
Ours (d ↑) 34.65 3 0.191 0.295 411k 11.94x 3
Ours (d = 4) 34.23 0.238 0.349 166k 3 13.33x 3
Non-neural (ref.) 33.01 0.400 0.775 123k 32.52x

mesh vertices. We would like to point out that this computation can take hours,
depending on the mesh size, while the other methods do not require any prepro-
cessing. For the training, we employ an L1 loss on the color values. We render
200 images for evaluation and report PSNR, DSSIM3 [47] and LPIPS [51]. All
experiments were done on an Nvidia A10G Tensor Core with 24GiB of memory.

The results in Tab. 1 and Fig. 3 show that our model achieves results on par
with the state-of-the-art while showing a notable speed-up compared to previous
approaches.

Reconstruction Quality Tab. 1 shows that our method yields quantitative results
that are on par with the other methods for the reconstruction quality. As can
be seen in Fig. 3, we even achieve a noticeable qualitative improvement for
some regions, while other regions are slightly worse. We found that areas of high
quality often correspond with a finer mesh in that area, which is to be expected
since, for those regions, more features are available.

3 For better readability we use the Structural Dissimilarity: DSSIM = (1− SSIM)/2

10 M. Mahajan et al.

(a) NeuTex (b) TF+RFF (c) INF (d) Ours (e) GT

Fig. 3: Qualitative results for texture reconstruction from multi-view images on the cat.
Our method enables high-quality reconstructions, matching state-of-the-art methods
in visual fidelity while offering a significant speedup. Because the baseline methods are
based on frequency encodings, they lead to an over-smoothening of intricate details
around the eye, which only our method can capture. Furthermore, NeuTex is unable to
capture spatially fast changing color like on the mouth of the cat and shows distortions
inside the ear.

Inference Time To benchmark the inference speed, we measure the evaluation
time of the encoding stage and the MLP for 215 points for each model. Note
that this does not include the ray mesh intersection or the computation of the
eigenfunctions. To reduce variance, we average the results over 300 measurements
of the same batch. Tab. 1 shows a significant speed-up of our method compared
to the other methods, which we attribute to the much smaller MLP size. Also, it
is important to note that our encoding strategy is computationally lightweight
since it involves a single matrix multiplication with low dimensions due to the
small feature size. As expected, the non-neural baseline is the fastest.

Number of Parameters For the number of parameters, we count all parameters
that are necessary to evaluate the model. This includes learnable components
like the weights of the network and the features, as well as non-learnable ones
like the Fourier feature matrix and the LBO eigenfunctions values. We observe
that the trade-off for the evaluation speed of our method is a slightly increased
number of parameters4 due to the feature matrices. This observation is similar
to feature-grid-based methods in the Euclidean space.

4.2 Ablation Study

Multi-Resolution Features We accumulate information distributed over mul-
tiple resolutions of our mesh to enable different scales of locality. This way, coarse
resolutions can capture more global information, and fine resolutions can act as

4 As a reference: a 512x512 3-channel color image consists of over 786k pixel values.

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 11

0 20 40 60 80 100 120 140

28

30

32

Epochs

P
SN

R

PSNR Values Over Epochs

Single-resolution (d=4, # Params.=521k)
Single-resolution (d=6, # Params.=781k)
Single-resolution (d=10, # Params.=1300k)
Multi-resolution (d=4, # Params.=604k)

Fig. 4: Validation PSNR over training time in epochs. Our multi-resolution feature
encoding leads to higher reconstruction quality despite having fewer parameters than
a single-resolution encoding. For the latter, we use the finest resolution and arrange
parameters the same way as in the multi-resolution approach. While a higher feature
dimension d leads to faster convergence in the single-resolution setting, it does not
improve the reconstruction quality despite the increased number of parameters.

correcting terms for local changes. Fig. 4 shows the effectivity of our multi-
resolution approach and demonstrates that a single-resolution setup struggles
to achieve high visual fidelity, even if the number of parameters exceeds the
multi-resolution approach. It confirms that our multi-resolution approach allows
an effective sharing of global information on different scales and enables recon-
structions of higher quality while maintaining rapid convergence.

Regularization Frequency encodings require the MLP to map encoded spatial
information to function values. Due to strong coupling of spatial information in
a single network, frequency encodings can interpolate for regions, where training
data is sparse. For our parametric encoding approach, working with fine meshes
and sparse training data can lead to unsupervised latent codes, creating visual
artifacts in our reconstructions. Our latent code regularization (Eq. (4)) uses
the mesh Laplacian to circumvent this issue. Fig. 5 shows how our regulariza-
tion reduces these artifacts significantly. The positive effect or our regularization
scheme is also underlined quantitatively in Tab. 1.

4.3 Deforming Meshes

For many real-world applications of meshes that include animations, it is cru-
cial that the representation of e.g . texture can also be used under deformations
of the mesh. Since our features are stored at the mesh vertices and are there-
fore intrinsic to the mesh, they are unaffected by deformations. Consequently,
our method supports mesh deformations natively without any additional com-
putational overhead. While the same is true for other intrinsic encodings [19],

12 M. Mahajan et al.

(a) Training without regularization (b) Training with regularization

Fig. 5: Qualitative results of our method for texture reconstruction with and without
the regularization based on the mesh Laplacian. The results on the left, without the
regularization, show visual artifacts around the ear, and on the shoe and arm. This
is a direct result of sparse training data resulting in untrained feature vectors. Our
regularization acts as a smoothing term that enables feature information to be diffused
to the unsupervised areas, significantly reducing the noise.

Reference mesh Rendering on deformed meshes

Fig. 6: Qualitative evaluation of texture represented by our method under mesh de-
formation. We train our network for a checker texture on the reference mesh (left) and
render images for various deformations. Since the mesh topology remains unchanged
under deformations, and our features are intrinsic to the mesh, our representation is
unaffected by the deformation and can be evaluated similarly to the reference configu-
ration. The results show that the representation is consistent under deformations and
produces no visible artifacts.

extrinsic methods like [32,42] need to map the intersection point in the deformed
configuration back to the reference configuration, which adds a slight computa-

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 13

tional overhead. In Fig. 6, we show qualitatively that a texture represented by
our method is consistent when the mesh is deformed and exhibits no noticeable
artifacts. For the experiments, we use a checker texture on two meshes from
the data provided by Sumner and Popovic [39], which we learn directly on the
respective reference mesh and evaluate on some of its deformations.

4.4 BRDF Reconstruction from Images with Calibrated Lighting

As a second application of our method, we consider the estimation of a spatially
varying bidirectional reflectance distribution function (BRDF) on a mesh. The
BRDF f(x, l, v) describes how much of the irradiance incident from the light
direction l ∈ S2 is reflected in the viewing direction v ∈ S2. To obtain the total
outgoing radiance Lo(x, v) at position x in the viewing direction v, the incoming
irradiance Li(x, l) needs to be integrated over the hemisphere H, which is known
as the rendering equation

Lo(x, v) =

∫
H
f(x, l, v)Li(x, l) cos θl dl. (5)

For the estimation of the BRDF, we consider the special case of a single,
directional light. As a result, the irradiance Li is independent of the position x,
and the rendering equation Eq. (5) reduces to a single evaluation for the direction
l of the directional light. The simplified equation reads

Lo(x, v) = f(x, l, v)LiIs(x, l) cos θl, (6)

where we have introduced the indicator function Is(x, l) to account for cast
shadows.

Several models have been proposed to parametrize the BRDF. In this work,
we choose the isotropic variant of the state-of-the-art Disney BRDF, which uses
12 parameters with values in the unit interval [4]. We compare against texture
fields and intrinsic neural fields and modify the methods to predict these parame-
ters spatially varying on the mesh by adjusting the output dimension accordingly.
For Texture Fields, we found that an exponential learning rate scheduler with
γ = 0.9 is necessary to prevent overfitting. All other methods remain unchanged.
We employ a batch size of b = 214 color values under a given light direction for
the training of all methods.

We use the established DiLiGenT-MV real-world dataset for our experiments
[21]. It contains HDR images of 5 objects with complex reflective behavior.
The images are taken from 20 calibrated views, captured under 96 calibrated
directional lights each. Moreover, the dataset contains meshes of the objects.
For training, we use 10 views with 30 lights each and evaluate the models on
20 lights for each of the remaining 10 views. We follow [29] and combine an
L1 loss with a gamma correction function applied to the color values. Since the
dataset contains HDR images, very bright regions would otherwise dominate
the loss, and information from darker regions would be suppressed. We refer to
the supplement for more details. The results in Tab. 2 and Fig. 7 show, that

14 M. Mahajan et al.

(a) TF+RFF (b) INF (c) Ours (d) GT

Fig. 7: Qualitative Results of the BRDF reconstruction for the cow of the DiLiGenT-
MV real-world dataset. The renderings show, that our method is able to reconstruct
sharp boundaries in the material and yields results that are practically indistinguishable
from the baseline methods, while being almost an order of magnitude faster.

Table 2: Results of the BRDF reconstruction. All metrics are averaged over the ex-
periments for the 5 objects of the DiLiGenT-MV real-world dataset. Note that DSSIM
and LPIPS are scaled by 100. Our method archives again similar reconstruction quality
to the other methods while maintaining the large speed-up observed previously.

Method PSNR ↑ DSSIM ↓ LPIPS ↓ # Params. ↓ Speedup ↑
TF+RFF 42.13 0.6718 1.50 3 332k 3 1.00x
INF 42.21 3 0.666 3 1.53 3 204930k 1.08x 3
Ours 42.17 3 0.6700 3 1.60 930k 3 7.58x 3

for BRDF estimation, we achieve similar reconstruction quality to the other
methods while maintaining the significant speed-up in evaluation time. For more
qualitative results, we refer to the supplement.

5 Conclusion

We have introduced MeshFeat as a multi-resolution parametric feature encoding
for neural fields on meshes. The approach adapts the idea of parametric feature
grids from the Euclidean space to meshes. Compared to existing approaches,
this enables us to work with considerably smaller MLPs, leading to a significant
speed-up. Our proposed multi-resolution approach is based on mesh simplifica-
tion and enables the effective sharing of global feature information. This allows
for higher reconstruction quality than a single-resolution approach while simul-
taneously requiring a smaller feature dimension. We have demonstrated the com-
putational efficiency of our encoding for texture and BRDF representation on
meshes, where we achieve reconstruction results that are on par with competing
methods based on frequency-based encodings with significantly longer evaluation
times. Additionally, we showcased our method’s native applicability to signals on
deforming meshes. We identify a more texture-adaptive multi-resolution feature
approach as a promising direction for future research. We hope our work provides
valuable insights applicable to various areas, including virtual and augmented
reality, animations, and computer graphics engines.

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 15

Acknowledgments. We thank Christian Koke for helpful discussions. This work
was supported by ERC Advanced Grant SIMULACRON.

References

1. Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., Hillaire, S.:
Real-Time Rendering 4th Edition. A K Peters/CRC Press (2018)

2. Baatz, H., Granskog, J., Papas, M., Rousselle, F., Novák, J.: Nerf-tex: Neural
reflectance field textures. In: Comput. Graph. Forum (2022)

3. Basri, R., Galun, M., Geifman, A., Jacobs, D.W., Kasten, Y., Kritchman, S.: Fre-
quency bias in neural networks for input of non-uniform density. In: ICML (2020)

4. Burley, B., Studios, W.D.A.: Physically-based shading at disney. In: Acm Siggraph
(2012)

5. Chabra, R., Lenssen, J.E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., New-
combe, R.: Deep local shapes: Learning local sdf priors for detailed 3d reconstruc-
tion. In: ECCV (2020)

6. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
CVPR (2019). https://doi.org/10.1109/CVPR.2019.00609

7. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: CVPR (2022)

8. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
SIGGRAPH (1997). https://doi.org/10.1145/258734.258849

9. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using
quadric error metrics. In: IEEE Visualization Conference (1998). https://doi.
org/10.1109/VISUAL.1998.745312

10. Grattarola, D., Vandergheynst, P.: Generalised implicit neural representations. In:
NeurIPS (2022)

11. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric reg-
ularization for learning shapes. In: ICML (2020)

12. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
a network with an edge. ACM TOG (2019). https://doi.org/10.1145/3306346.
3322959

13. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: SAPE:
spatially-adaptive progressive encoding for neural optimization. In: NeurIPS (2021)

14. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: Mesh draping:
Parametrization-free neural mesh transfer. Comput. Graph. Forum (2023). https:
//doi.org/10.1111/CGF.14721

15. Hwang, I., Kim, H., Kim, Y.M.: Text2scene: Text-driven indoor scene stylization
with part-aware details. In: CVPR (2023). https://doi.org/10.1109/CVPR52729.
2023.00188

16. Jiang, C.M., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local
implicit grid representations for 3d scenes. In: CVPR (2020)

17. Jiang, Z., Schneider, T., Zorin, D., Panozzo, D.: Bijective projection in a shell.
ACM TOG (2020). https://doi.org/10.1145/3414685.3417769

18. Kim, H., Jang, Y., Lee, J., Ahn, S.: Hybrid neural representations for spherical
data. CoRR (2024). https://doi.org/10.48550/ARXIV.2402.05965

19. Koestler, L., Grittner, D., Möller, M., Cremers, D., Lähner, Z.: Intrinsic neural
fields: Learning functions on manifolds. In: ECCV (2022). https://doi.org/10.
1007/978-3-031-20086-1_36

https://doi.org/10.1109/CVPR.2019.00609
https://doi.org/10.1109/CVPR.2019.00609
https://doi.org/10.1145/258734.258849
https://doi.org/10.1145/258734.258849
https://doi.org/10.1109/VISUAL.1998.745312
https://doi.org/10.1109/VISUAL.1998.745312
https://doi.org/10.1109/VISUAL.1998.745312
https://doi.org/10.1109/VISUAL.1998.745312
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1111/CGF.14721
https://doi.org/10.1111/CGF.14721
https://doi.org/10.1111/CGF.14721
https://doi.org/10.1111/CGF.14721
https://doi.org/10.1109/CVPR52729.2023.00188
https://doi.org/10.1109/CVPR52729.2023.00188
https://doi.org/10.1109/CVPR52729.2023.00188
https://doi.org/10.1109/CVPR52729.2023.00188
https://doi.org/10.1145/3414685.3417769
https://doi.org/10.1145/3414685.3417769
https://doi.org/10.48550/ARXIV.2402.05965
https://doi.org/10.48550/ARXIV.2402.05965
https://doi.org/10.1007/978-3-031-20086-1_36
https://doi.org/10.1007/978-3-031-20086-1_36
https://doi.org/10.1007/978-3-031-20086-1_36
https://doi.org/10.1007/978-3-031-20086-1_36

16 M. Mahajan et al.

20. Lee, A.W.F., Sweldens, W., Schröder, P., Cowsar, L.C., Dobkin, D.P.: MAPS:
multiresolution adaptive parameterization of surfaces. In: SIGGRAPH (1998).
https://doi.org/10.1145/280814.280828

21. Li, M., Zhou, Z., Wu, Z., Shi, B., Diao, C., Tan, P.: Multi-view photometric stereo:
A robust solution and benchmark dataset for spatially varying isotropic materials.
IEEE TIP (2020). https://doi.org/10.1109/TIP.2020.2968818

22. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: CVPR (2023)

23. Lin, S., Zhou, B., Zheng, Z., Zhang, H., Liu, Y.: Leveraging intrinsic properties
for non-rigid garment alignment. In: ICCV (2023). https://doi.org/10.1109/
ICCV51070.2023.01332

24. Liu, H.D., Zhang, J.E., Ben-Chen, M., Jacobson, A.: Surface multigrid via intrinsic
prolongation. ACM TOG (2021). https://doi.org/10.1145/3450626.3459768

25. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
NeurIPS (2020)

26. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker,
M.: Modulated periodic activations for generalizable local functional representa-
tions. In: ICCV (2021)

27. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: CVPR (2019)

28. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: Text-driven
neural stylization for meshes. In: CVPR (2022). https://doi.org/10.1109/
CVPR52688.2022.01313

29. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.:
Nerf in the dark: High dynamic range view synthesis from noisy raw images. In:
CVPR (2022). https://doi.org/10.1109/CVPR52688.2022.01571

30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

31. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM TOG (2022). https://doi.org/10.
1145/3528223.3530127

32. Oechsle, M., Mescheder, L.M., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields:
Learning texture representations in function space. In: ICCV (2019). https://doi.
org/10.1109/ICCV.2019.00463

33. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: CVPR (2019)

34. Peng, S., Niemeyer, M., Mescheder, L.M., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: ECCV (2020). https://doi.org/10.1007/978-3-030-
58580-8_31

35. Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio,
Y., Courville, A.: On the spectral bias of neural networks. In: ICML (2019)

36. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. NIPS
(2007)

37. Sharp, N., Crane, K.: A Laplacian for Nonmanifold Triangle Meshes. Comput.
Graph. Forum (2020)

38. Sitzmann, V., Martel, J.N.P., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Im-
plicit neural representations with periodic activation functions. In: NeurIPS (2020)

39. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM TOG
(2004)

https://doi.org/10.1145/280814.280828
https://doi.org/10.1145/280814.280828
https://doi.org/10.1109/TIP.2020.2968818
https://doi.org/10.1109/TIP.2020.2968818
https://doi.org/10.1109/ICCV51070.2023.01332
https://doi.org/10.1109/ICCV51070.2023.01332
https://doi.org/10.1109/ICCV51070.2023.01332
https://doi.org/10.1109/ICCV51070.2023.01332
https://doi.org/10.1145/3450626.3459768
https://doi.org/10.1145/3450626.3459768
https://doi.org/10.1109/CVPR52688.2022.01313
https://doi.org/10.1109/CVPR52688.2022.01313
https://doi.org/10.1109/CVPR52688.2022.01313
https://doi.org/10.1109/CVPR52688.2022.01313
https://doi.org/10.1109/CVPR52688.2022.01571
https://doi.org/10.1109/CVPR52688.2022.01571
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1109/ICCV.2019.00463
https://doi.org/10.1109/ICCV.2019.00463
https://doi.org/10.1109/ICCV.2019.00463
https://doi.org/10.1109/ICCV.2019.00463
https://doi.org/10.1007/978-3-030-58580-8_31
https://doi.org/10.1007/978-3-030-58580-8_31
https://doi.org/10.1007/978-3-030-58580-8_31
https://doi.org/10.1007/978-3-030-58580-8_31

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 17

40. Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In: CVPR (2022)

41. Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Ja-
cobson, A., McGuire, M., Fidler, S.: Neural geometric level of detail: Real-time
rendering with implicit 3D shapes. In: CVPR (2021)

42. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. NeurIPS (2020)

43. Tang, D., Dou, M., Lincoln, P., Davidson, P., Guo, K., Taylor, J., Fanello, S., Ke-
skin, C., Kowdle, A., Bouaziz, S., Izadi, S., Tagliasacchi, A.: Real-time compression
and streaming of 4d performances. In: ACM TOG (2018)

44. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. NIPS (2017)

45. Walker, T., Mariotti, O., Vaxman, A., Bilen, H.: Explicit neural surfaces: Learning
continuous geometry with deformation fields. CoRR (2023). https://doi.org/10.
48550/ARXIV.2306.02956

46. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In:
NeurIPS (2021)

47. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE TIP (2004). https://doi.org/
10.1109/TIP.2003.819861

48. Xiang, F., Xu, Z., Hasan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: Neutex:
Neural texture mapping for volumetric neural rendering. In: CVPR (2021). https:
//doi.org/10.1109/CVPR46437.2021.00704

49. Yang, B., Bao, C., Zeng, J., Bao, H., Zhang, Y., Cui, Z., Zhang, G.: Neumesh:
Learning disentangled neural mesh-based implicit field for geometry and texture
editing. In: ECCV (2022). https://doi.org/10.1007/978-3-031-19787-1_34

50. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: NeurIPS (2021)

51. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018). https:
//doi.org/10.1109/CVPR.2018.00068

https://doi.org/10.48550/ARXIV.2306.02956
https://doi.org/10.48550/ARXIV.2306.02956
https://doi.org/10.48550/ARXIV.2306.02956
https://doi.org/10.48550/ARXIV.2306.02956
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR46437.2021.00704
https://doi.org/10.1109/CVPR46437.2021.00704
https://doi.org/10.1109/CVPR46437.2021.00704
https://doi.org/10.1109/CVPR46437.2021.00704
https://doi.org/10.1007/978-3-031-19787-1_34
https://doi.org/10.1007/978-3-031-19787-1_34
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068

18 M. Mahajan et al.

Appendix

In this supplementary material, we give additional details on the multi-resolution
strategy in Appendix A, on the training in Appendix B, as well as additional
experimental results in Appendix C. The latter includes additional renderings for
all objects as well as quantitative results for the individual objects of the BRDF
reconstruction. Moreover, we present a qualitative analysis of the influence of
the different resolutions of our multi-resolution approach in Appendix C.1 and
further analysis of the hyperparameters in Appendix C.3.

A Mesh Simplification-Based Multi-Resolution Strategy

u v

w
Simplification

Step

Fig. 8: Visualization of a single simplification step. The orange edge has been chosen
by the algorithm to be contracted. The two adjacent vertices u and v are collapsed
into the vertex w. The two gray triangles are removed in this process. Figure adapted
from [8].

As described in the main text, we use the mesh simplification algorithm
by Garland and Heckbert [8] to construct our multi-resolution approach. The
algorithm iteratively contracts vertex pairs until a specified target number of
vertices is reached. The pairs to be contracted are selected based on a geometric
error, as shown in the original work. See Fig. 8 for a visualization of a single
contraction step on an edge.

By using this simplification algorithm, we obtain the sequence of meshes
((V (i), F (i)))i with the specified target resolutions. Recall that the multi-resolution
strategy is then based on the mapping

m(i) : V → V (i) v 7→ m(i)(v) = v(i) (7)

(Eq. (1) in the main text) that assigns a vertex v ∈ V in the original to mesh
the vertex v(i) ∈ V (i) in resolution i to which v was collapsed in the decimation
algorithm. Consider Fig. 8 as an example and assume that the mesh on the
left is the original resolution and the mesh on the right is the i-th resolution.
In that case, m(i) would map both vertices u and v to w, i.e. m(i)(u) = w
and m(i)(v) = w. The idea works analogously for multiple simplification steps
between the resolutions.

We interpolate the features in the original resolution. To do so, we aggregate
the features of the different resolutions based on the mapping in Eq. (7): For each

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 19

vertex in the original resolution, we query to which vertex in the coarser reso-
lutions it was collapsed and retrieve the respective features. To obtain the final
multi-resolution feature for this vertex, we sum the features from all resolutions
according to Eq. (2) in the main text. Note that we do not compute a geomet-
ric mapping between the resolutions but only use the connectivity information
yielded by the mesh simplification algorithm and contained in the mapping. The
interpolation of the features is performed based on the Barycentric coordinates
of the respective triangle in the original mesh, see Eq. (3) in the main text.

B Additional Training Details

B.1 Training Details for Texture Reconstruction

For the texture reconstruction experiments, we employ the same dataset as in
[19,32], which includes the mesh and multiple views of the cat and human object.
We use the same views as done in [19] to make the comparison as direct as
possible. These contain a set of 5 training, 100 validation and 200 test 512x512
views. The training images can be seen in Fig. 10.

B.2 DiLiGenT-MV Dataset

For the experiments on the BRDF reconstruction, we use the DiLiGenT-MV
real-world dataset, which contains HDR images of 5 objects, taken from cali-
brated viewpoints under calibrated lighting conditions [21]. The triangle meshes
provided with the dataset contain an excessively large number of vertices, lead-
ing to a significantly prolonged computation time for the LBO eigenfunctions
for INF and an increased occurrence of unsupervised vertices in our method.
Therefore, we reduce the number of vertices from roughly 106 to about 2 · 105.
To stay consistent with the simplified mesh, we compute the normals of the sim-
plified mesh for the rendering rather than using the normal maps included in
the dataset.

B.3 Loss for the BRDF Estimation

To avoid a dominant influence of the bright regions on the loss, we use a gamma
mapping to transform the RGB values from linear to sRGB space before applying
the L1 loss, as proposed by [29]. Hence, the loss formulation reads

Ldata =
1

N

N∑
i=1

|γ(Io(x, v))− γ(IGT (x, v)|, (8)

where Io(x, v) is the rendered color and IGT (x, v) is the ground truth color of the
pixel corresponding to x and v in linear color space. We use the following stan-
dard formula for the gamma mapping g : [0, 1] → [0, 1], clin 7→ csRGB described
in [1]:

g(clin) =

{
323
25 clin if clin ≤ 0.0031308
211
200 c

5
12

lin − 11
200 else

(9)

20 M. Mahajan et al.

C Additional Experimental Results

C.1 Visualization of the Muli-Resolution Features

Our multi-resolution strategy enables an effective sharing of common features.
Coarser resolutions can learn global features, while finer resolutions act as a
correcting term for details. We visualize this, by rendering the trained model with
different resolution stages deactivated. More precisely, we modify the feature
gathering described in Eq. (2) in the main text, such that we do not sum the
contributions over all resolutions but only over a subset of the resolutions. We
start from the coarsest one and successively add finer resolutions.

Qualitative results are shown in Fig. 9. The model was trained as described in
the main text with 4 resolutions r(i) ∈ {1, 0.1, 0.05, 0.01}. The results show that,
indeed, the coarser resolutions capture coarse and more global texture features
that are then refined by including the finer resolutions in the feature gathering.

1 Resolution 2 Resolutions 3 Resolutions All 4 Resolutions

Fig. 9: Renderings with progressive unlocking of finer resolutions. The model was
trained as detailed in the main text with 4 resolution levels r(i) ∈ {1, 0.1, 0.05, 0.01}.
From left to right we successively include finer resolutions in our feature gathering
(Eq. (2) in the main text), starting from only the coarsest resolution. The results
show that our multi-resolution approach works as expected, and coarser resolutions
(left) capture global features, while finer resolutions (right) enhance details in our
representation.

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 21

C.2 Additional Results for the Texture Reconstruction

We show additional qualitative comparisons between the methods in Fig. 11.
Our method yields high-quality reconstruction results on par with the other
methods while admitting the significantly faster inference described in the main
paper. In Fig. 12, we present additional views for our method, showing that we
consistently achieve a good reconstruction on all mesh parts.

Fig. 10: Training views for the cat and human dataset used for the texture reconstruc-
tion experiments. Note that we use the same views as done in the training by [19].

C.3 Further analysis on the choice of hyperparameters

Table 3: Reconstruction quality with different numbers of layers and hidden dimen-
sions. We observe a slight decrease in reconstruction quality after decreasing the hidden
dimension or the number of layers even further. For a single layer, the results are slightly
worse, even for a significantly increased hidden dimension.

Hidden Layers Hidden dimension PSNR↑ DSSIM ↓ LPIPS ↓
2 16 32.31 0.209 0.417
2 32 32.51 0.202 0.400
1 32 32.39 0.205 0.402
1 64 32.42 0.206 0.395
1 128 32.39 0.210 0.398

MLP Parameters One of the main reasons for our significant speedup is the
very shallow MLP with 2 hidden layers with a dimension of 32. Since the latent
features contain the spatial information of the texture, the MLP only needs to
decode them into RGB values. In Tab. 3, we analyze the effect of reducing the
MLP size even further. However, reducing the hidden dimension or the number
of layers yields diminishing returns.

22 M. Mahajan et al.

(a) NeuTex (b) TF+RFF (c) INF (d) Ours (e) GT

Fig. 11: Further qualitative comparisons on unseen views to the baseline methods
[19,32,48]. We produce results that are on par with the state-of-the-art while providing
our notable speedup. Note that we use d = 10 for the latent codes of the cat object in
this figure.

Encoding dimensions The dimension d of our features is the main factor
for the model size, and therefore a small dimension is desirable. However, the
model size needs to be balanced with the reconstruction quality. Tab. 4 shows
the reconstruction quality over a large range of encoding dimensions. We observe
only a slight influence of the encoding dimension on the reconstruction quality,
with a slight indication of overfitting for increasing the dimension. For very low
dimensions, the results show a significant drop, indicating that the model is
unable to reconstruct the texture faithfully, given too few features to store the
information.

Resolution configurations Our method leverages a mesh simplification al-
gorithm [8, 9] to obtain different mesh resolutions, which are then used for the
multi-resolution approach. It is apparent through Tab. 5 that the method is ro-
bust to different resolution configurations as long as the finest resolution is the
original resolution, i.e. r(1) = 1.

C.4 Absolute inference speed

To gain more insight into the inference speedup, we provide absolute values for
inference speed in Tab. 6.

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 23

Fig. 12: Further renderings for unseen views for the cat and human object using Mesh-
Feat. We see, that our method enables good reconstruction on all parts of the mesh.

C.5 Qualitative comparison to a single resolution approach

Sec. 4.2 in the main text demonstrates how a single-resolution setup struggles
to achieve a good reconstruction. Fig. 13 shows that the results of the single-
resolution show noisy areas despite using the regularizer. This might indicate
that the multi-resolution enables the regularizer to act more efficiently since it
increases the area of influence through the coarse resolutions.

C.6 Additional Results for the BRDF Estimation

For completeness, we show the quantitative results for all 5 objects of the
DiLiGenT-MV dataset individually in Tab. 7. The results confirm, that we
achieve results that are consistently of comparable reconstruction quality to the
other methods while achieving a significant inference speed-up. Qualitative re-
sults in the form of a single view per object are presented in Fig. 14. We see that
for all objects in the dataset, the results of our method are hardly distinguishable
from those of the other methods.

24 M. Mahajan et al.

Table 4: Influence of the encoding dimensions d for texture reconstruction on the
human object. While the reconstruction quality is fairly similar over a large range of
dimensions, we observe a slight decrease for increasing values of d, which might indicate
the tendency of overfitting. Also, we see a significant drop at the low end of the table,
which shows that a minimum number of encoding dimensions is required to achieve
high-quality reconstructions.

Latent code dim (d) PSNR ↑ DSSIM ↓ LPIPS ↓
1 29.30 0.3209 0.8058
2 32.28 0.2134 0.4182
3 32.21 0.2166 0.4095
4 32.51 0.2019 0.3962
5 32.42 0.2001 0.4053
6 32.65 0.2003 0.3984
7 32.43 0.2022 0.3342
8 32.46 0.2003 0.4051
9 32.51 0.2014 0.4045
10 32.43 0.2043 0.4035
11 32.43 0.2001 0.4113
12 32.48 0.2060 0.4015
13 32.48 0.2039 0.4191
14 32.43 0.2023 0.4050
15 32.47 0.2036 0.3991

Table 5: Influence of the choice of resolutions r(i) on the reconstruction quality. We
observe a fairly stable reconstruction quality for different resolution combinations, as
long as the finest resolution r(1) = 1 is included.

Used Resolutions PSNR ↑ DSSIM ↓ LPIPS ↓
{1, 0.1, 0.05, 0.01} 32.51 0.2019 0.3962
{1, 0.1, 0.01} 32.44 0.2024 0.4010
{1, 0.5, 0.25, 0.125} 32.35 0.2118 0.3899
{1, 0.25, 0.0625, 0.0625} 32.38 0.2061 0.3874
{0.75, 0.25, 0.075, 0.025} 31.51 0.2728 0.4811
{0.9, 0.12, 0.05, 0.01} 31.99 0.2301 0.4303

Table 6: Absolute inference speed in milliseconds for texture representation on the
human object. Our time measurement includes a GPU warmup over 10 steps. The
reported absolute inference time is the time taken for a forward pass for each method
averaged over 300 repetitions.

Method human cat
Neutex 14.738ms 14.453ms
TF+RFF 7.120ms 7.090ms
INF 5.000ms 4.994ms
Ours d=4 1.144ms 1.021ms
Ours d=10 1.409ms 1.381ms

MeshFeat: Multi-Resolution Features for Neural Fields on Meshes 25

Multiresolution
(d = 4)

Single resolution
(d = 4)

Single resolution
(d = 6)

Single resolution
(d = 10)

Fig. 13: Qualitative comparison between the multi-resolution approach and reconstruc-
tions using features over only a single resolution (the original mesh resolution). The
single-resolution approach leads to more noisy reconstructions despite the increased
dimension (d) of the feature vectors.

Table 7: Quantitative results of the BRDF reconstruction for all five objects of the
DiLiGenT-MV dataset. Note that DSSIM and LPIPS are scaled by 100. The results
show, that our method yields reconstruction quality that is on par with the other
methods while achieving a significant speed-up for the inference.

Object Method PSNR ↑ DSSIM ↓ LPIPS ↓ # Params. ↓ Speedup ↑
bear TF+RFF 43.68 0.4826 0.9227 3 332k 3 1.00x

INF 43.78 3 0.4772 3 0.9730 3 204931k 1.08x 3
Ours 43.73 3 0.4778 3 0.9913 930k 3 7.78x 3

buddha TF+RFF 37.03 3 1.0785 3 2.0095 3 332k 3 1.00x
INF 37.02 1.0904 2.0393 3 204929k 1.08x 3
Ours 37.04 3 1.0862 3 2.0569 930k 3 7.35x 3

cow TF+RFF 47.22 0.3318 1.1384 3 332k 3 1.00x
INF 47.31 3 0.3299 3 1.2184 3 204931k 1.08x 3
Ours 47.29 3 0.3300 3 1.4572 930k 3 7.62x 3

pot2 TF+RFF 46.69 0.4581 0.9326 3 332k 3 1.00x
INF 46.81 3 0.4485 3 0.9317 3 204927k 1.08x 3
Ours 46.80 3 0.4518 3 0.9802 930k 3 7.72x 3

reading TF+RFF 36.02 3 1.0079 2.5034 3 332k 3 1.00x
INF 36.14 3 0.9832 3 2.4690 3 204929k 1.08x 3
Ours 36.02 1.0041 3 2.5352 930k 3 7.44x 3

26 M. Mahajan et al.

be
ar

bu
dd

ha
co

w
po

t2
re

ad
in

g

(a) TF+RFF (b) INF (c) Ours (d) GT

Fig. 14: Qualitative Results for the BRDF reconstruction for all objects of the
DiLiGenT-MV dataset. The results of our method are practically indistinguishable
from the results of the other methods.

	MeshFeat: Multi-Resolution Featuresfor Neural Fields on Meshes

